Model Connection
HAWKI Model Connection Data Flow
This section describes the data flow in HAWKI's AI model connection system, from the moment a request is received in the StreamController->handleAiConnectionRequest
method, through the formatting of data for AI models, to how the model responses are processed and formatted for HAWKI.
Overview
HAWKI's AI integration uses a service-based architecture to process requests to various AI models (OpenAI, GWDG, Google). The system is designed to handle both streaming and non-streaming responses, and supports different AI providers with their specific API requirements.
Key Components
The AI connection system consists of several key services:
- StreamController: Entry point for AI requests handling both direct and group chat interactions
- AiPayloadFormatterService: Formats user messages into provider-specific payloads
- ModelConnectionService: Manages the HTTP connections to AI model providers
- AiResponseFormatterService: Processes and formats responses from AI models
- ModelUtilityService: Provides utility functions for model configuration and provider detection
- UsageAnalyzerService: Tracks and records token usage for analytics and billing
Detailed Data Flow
1. Request Reception
The flow begins when a client sends a request to the handleAiConnectionRequest
method in the StreamController
. The request includes:
- A payload containing the model ID, streaming preference, and messages
- Additional metadata for handling the response (broadcast flags, message IDs, etc.)
$validatedData = $request->validate([
'payload.model' => 'required|string',
'payload.stream' => 'required|boolean',
'payload.messages' => 'required|array',
'payload.messages.*.role' => 'required|string',
'payload.messages.*.content' => 'required|array',
'payload.messages.*.content.text' => 'required|string',
'broadcast' => 'required|boolean',
'isUpdate' => 'nullable|boolean',
'messageId' => 'nullable|string',
'threadIndex' => 'nullable|int',
'slug' => 'nullable|string',
'key' => 'nullable|string',
]);
2. Initial Payload Formatting
The received request is passed to the AiPayloadFormatterService
which formats the messages for the appropriate AI provider:
$formattedPayload = $this->payloadFormatter->formatPayload($validatedData['payload']);
The formatPayload
method:
- Identifies the provider based on the model ID
- Applies provider-specific formatting rules
- Returns a properly formatted payload that matches the provider's API requirements
Provider-Specific Formatting
For OpenAI/GWDG:
- Handles special cases for models like mixtral-8x7b-instruct and o1
- Extracts the text content from the nested content structure
- Returns a payload with model, messages, and stream parameters
return [
'model' => $payload['model'],
'messages' => $formattedMessages,
'stream' => $payload['stream'],
];
For Google:
- Transforms role names (assistant → model)
- Restructures the content into Google's expected "parts" format
- Returns a payload with model, contents, and stream parameters
return [
'model' => $payload['model'],
'contents' => $formattedMessages,
'stream' => true,
];
3. Request Handling Flow Determination
Based on the broadcast
flag, the request flows through one of two paths:
- Group Chat Path (
handleGroupChatRequest
): For messages that need to be broadcasted to a room - Direct Path: For one-on-one AI conversations
The system also checks if the model supports streaming:
if($formattedPayload['stream'] && $model['streamable']){
$formattedPayload['stream_options'] = [
"include_usage"=> true,
];
$this->createStream($formattedPayload);
}
else{
$data = $this->createRequest($formattedPayload);
return response()->json($data);
}
4. Connection to AI Model
The ModelConnectionService
handles the actual HTTP connection to the AI provider's API:
Non-Streaming Requests
For non-streaming requests, requestToAiModel
or requestToGoogle
methods:
- Set up the necessary HTTP headers
- Retrieve the provider configuration
- Create a cURL request with the formatted payload
- Send the request to the provider's API endpoint
- Return the complete response
$response = $this->modelConnection->requestToAiModel($formattedPayload);
Streaming Requests
For streaming responses, the streamToAiModel
method:
- Sets up SSE (Server-Sent Events) headers
- Configures a persistent cURL connection
- Uses a callback function to process each chunk as it arrives
- Maintains the connection until the response is complete
$this->modelConnection->streamToAiModel($formattedPayload, $onData);
The callback function handles each chunk of data:
$onData = function ($data) use ($user, $avatar_url, $formattedPayload) {
// Process chunks and send to client
};
5. Response Formatting
The AiResponseFormatterService
processes responses from the AI models:
For Non-Streaming Responses
The formatDefaultResponse
or formatGoogleResponse
methods:
- Parse the JSON response
- Extract the content and usage information
- Return the content and usage as an array
[$content, $usage] = $this->responseFormatter->formatDefaultResponse($response);
For Streaming Responses
The formatDefaultChunk
method:
- Parses each JSON chunk
- Checks if it's the final chunk
- Extracts usage information if available
- Returns the content fragment, completion status, and usage data
[$chunk, $isDone, $usage] = $this->responseFormatter->formatDefaultChunk($chunk);
6. Usage Tracking
The UsageAnalyzerService
records token usage for analytics and billing:
$this->usageAnalyzer->submitUsageRecord($usage, 'private', $formattedPayload['model']);
This records:
- Prompt and completion tokens
- Model used
- Type of conversation (private or group)
- User and room information (if applicable)
7. Response Delivery
Finally, the formatted response is delivered to the client:
For Non-Streaming Responses
A complete JSON response is returned:
$messageData = [
'author' => [
'username' => $user->username,
'name' => $user->name,
'avatar_url' => $avatar_url,
],
'model' => $formattedPayload['model'],
'isDone' => true,
'content' => $content,
];
return $messageData;
For Streaming Responses
Each chunk is immediately sent to the client:
echo json_encode($messageData). "\n";
For Group Chats
In group chat mode, the response is:
- Encrypted with the room's key
- Stored in the database
- Broadcasted to all members via Laravel events
$encryptiedData = $cryptoController->encryptWithSymKey($encKey, $content, false);
$message = Message::create([
'room_id' => $room->id,
'member_id' => $member->id,
'message_id' => $nextMessageId,
'message_role' => 'assistant',
'model' => $formattedPayload['model'],
'iv' => $encryptiedData['iv'],
'tag' => $encryptiedData['tag'],
'content' => $encryptiedData['ciphertext'],
]);
SendMessage::dispatch($message, $isUpdate)->onQueue('message_broadcast');
Provider-Specific Handling
OpenAI/GWDG Format
Input message format:
{
"model": "gpt-4o",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"}
],
"stream": true
}
Response format:
{
"choices": [
{
"delta": {
"content": "I'm doing well, thank you for asking!"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 23,
"completion_tokens": 12
}
}
Google Format
Input message format:
{
"contents": [
{
"role": "user",
"parts": {
"text": "Hello, how are you?"
}
}
]
}
Response format:
{
"candidates": [
{
"content": {
"parts": [
{
"text": "I'm doing well, thank you for asking!"
}
]
}
}
],
"usageMetadata": {
"promptTokenCount": 23,
"candidatesTokenCount": 12
}
}
Error Handling
The system includes error handling at multiple levels:
- Request validation in the controller
- Provider availability checking in the formatter
- Connection error handling in the model connection service
- Response parsing error handling in the formatter
When errors occur, they are logged and appropriate error responses are returned to the client.